WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Chemical attitude adjustment February 26th, 2017 by

Kannappan, C. Sekar, his wife, Bharathidasan, BagyarajAgricultural extension can work deep changes in farmers’ attitudes. Ironically, the extensionists themselves often think that a change in heart is difficult to achieve, so it was good to meet some inspired farmers last week in Tamil Nadu, India, while teaching a course with Paul Van Mele to agricultural researchers and extension agents.

We wrote four fact sheets with advice for farmers and we wanted to show the papers to real farmers, as a kind of peer review. One of the participants, Mrs. P. Tamilselvi, took us to the village of Seethapappi, where she works as an extensionist. The course participants, mostly agricultural researchers, formed small groups and found farmers to talk to.

We approached a farmhouse, where entomologist K. Bharathidasan called out, asking if anyone was home. When a surprised couple emerged, Bharathidasan introduced himself and soon had the farmers reading a fact sheet in Tamil on groundnut stem rot.

After Mr. C. Sekar read the fact sheet he talked about an organic agricultural concoction he used as a fertilizer and insecticide. He called it pancha kaviya, alluding to five ingredients it contained. Bharathidasan wrote down the recipe:

Mix 1) cow dung, 2) cow urine, 3) ghee, milk and curd, 4) coconut water and 5) jiggery (a candy) or sugarcane juice. Mix the ingredients thoroughly. Keep for 45 days. Filter the liquid directly into a sprayer and spray the crop.

This was only the first of many natural agro-chemicals farmers in this village described to us. Sekar also makes an organic pesticide with eight types of local plants. He adds them to cow urine and keeps them for 20 days. Then he filters the liquid and sprays it on his crops.

When Mrs. Sekar read the fact sheet she mentioned another organic pesticide. Two more farmers had their own recipe for a home brew to spray on plants.

Bagyaraj and farmer Prakash Kanna CROPPEDFarmer Prakash Kanna showed us a batch of pancha kaviya he’d made, a dull brown mix in a plastic drum. It had a strong, sour smell. He put it in irrigation water to fertilize his plants. He called it a growth regulator. (The pancha kaviya adds nutrients and beneficial flora and fauna to the soil).

The farmers said they also used marigold extract and gypsum powder to control various diseases in groundnuts (peanuts). And they enhance the soil with a beneficial bacterium, Pseudomonas, mixed with aged cow dung which helps the bacteria multiply and suppress fungi that cause disease.

That’s quite a lot of innovation.

Bharathidasan later told me that the farmers really liked the fact sheets, except for the references to chemicals. That wasn’t surprising given the many non-chemical options the villagers were using.

Later that week we visited another village, Panayaburam, slightly larger than Seethapappi, with a small cooperative office where the farmers met.

Here we quickly learned of a different set of attitudes. The farmers did mention neem oil and using a net to keep small insect pests out of vegetables, but many said that “here we only use chemicals.” One went so far as to say that if you used a mix made from cow dung on your plants, the other farmers would say that you were insane.

Anthropologists have long known that each village is unique; conclusions drawn in one village may not apply to neighboring ones. Even so, such a big difference in attitudes to chemicals was surprising. Seethapappi farmers said that they liked everything in the fact sheets, except for the chemicals. In Panayaburam farmers only wanted to know about pesticides to manage pests and diseases.

There is one major difference between these two villages. Organic-leaning Seethapappi has a KVK (farm science center), where farmers receive training and get advice. Extension agents in that KVK have generated a lot of excitement about making inputs from local materials. Panayaburam does not have a KVK, and farmers rely on the biased advice of agro-chemical dealers to keep plants healthy.

A KVK is a permanent structure, with a building and staff, working with farmers over the years. Extensionists may become frustrated with the pace of change because farmers seldom adopt a new technique instantly. Smallholders have to try out innovations on their own. Extension agents can and do make a difference in farmers’ attitudes about agrochemicals, even if it takes time.

Share on FacebookTweet about this on Twitter

Village smart phones February 19th, 2017 by

village smart phones 1One of the most common questions about farmer training videos is how farmers will watch them if they don’t have electricity to run a projector, or own a laptop. As mobile communications improve, however, new ways are emerging that are making it easier for farmers to download, view and share videos.

This week, at a workshop in Tamil Nadu, southern India, my colleague Jeff and I were teaching local partners to validate fact sheets on major crop pests and diseases with farmers. We all learned a lot from farmers who read first drafts, and commented on their content. The fact sheets than served as basis on which partners developed scripts for training videos. Before leaving the village I was again reminded that farmers no longer need expensive hardware (such as a computer or TV and DVD player) to watch videos.

village smart phones 2Technology has evolved swiftly and influenced lives in rural areas in ways that were hard to imagine a decade ago. Over the past decade mobile phone companies in developing countries have been offering financial services that are just beginning to see the light in Western countries.

The boom in mobile phone use has triggered new types of service providers. Teenagers in Nigeria and many other African countries now tap power from solar panels to charge the mobile phones of rural folks coming to the weekly market.

village smart phones 3Last year, Gérard Zoundji (from the University of Abomey-Calavi) sent me photographs of a farmer in southern Benin who had watched farmer training videos about vegetables on his mobile phone. Someone had bought a DVD at the local agro-input shop and converted the videos from the DVD into 3gp format to watch on his mobile. Farmers are now able to watch videos even without DVD players.

village smart phones 4This week in India I saw farmers go one step further, and download videos. Kannappan, one of the trainees from the local NGO MSSRF, was chatting with some of the village farmers when one of them, Ramesh Permal, mentioned he was rearing fish in a pond. ICT-savvy Kannappan took out his mobile phone, connected to the Access Agriculture website, and searched among all Tamil videos, and found one on raising fingerlings. It took him less than 3 minutes to download the video to his mobile. Mr. Permal and another farmer then took out their smart phones, and swiftly connected to Kannappan’s mobile . The video file was nearly 50 Mb, but they transferred it to their mobile in just over 10 seconds using the SHAREit app. For ease of downloading to mobile phones when there is not a very good internet connection, Access Agriculture has also made all videos in its library available in 3gp format, which is about half the size.

After having said goodbye to the farmers, one of them saw the Access Agriculture website address (www.accessagriculture.org) on the back of my t-shirt and asked if he could take a photograph of it (with his phone). He would use the address to download more quality training videos in his own language.

Farmers may not have computers, but they are starting to get smart phones. Some smallholders rely on extensionists to get electronic information, but others are starting to use their phones to access information on their own, directly from the internet.

Acknowledgements

We are grateful to the MS Swaminathan Research Foundation (MSSRF) and the Krishi Vigyan Kendra (Farmer Science Centre) for helping to organise the workshop and field visits.

Related blog stories:

More than a mobile

Cell phones for smallholders

Village movies in Malawi

Watching videos without smartphones

Share on FacebookTweet about this on Twitter

Stopping a silent killer February 12th, 2017 by

Vea la versión en español a continuación

Mycotoxins are poisons produced by common mold fungi. The best known examples are aflatoxins, produced by Aspergillus, which are of increasing concern worldwide because they contaminate  many types of stored foods, including groundnuts (peanuts), manioc, maize (corn) and chilli. Aflatoxins affect the health of people and animals and are powerful carcinogens if  enough is consumed. Like many successful poisons, aflatoxins are invisible and tasteless, so they are tricky to manage.

sorting groundnutsThe other week, I was in Chuquisaca, Bolivia, with Paul and Marcella from Agro-Insight, making a video for farmers on how to manage molds and reduce contamination of food. Part of the solution is surprisingly low-tech.

The first step is to recognize the molds. They look like a dark green powder, growing between the pink skin of the peanuts and the white layer of the shell around them. Farmer Dora Campos explains that the people in her village, Achiras, used to dismiss the molds, saying simply that the pods were rotten. Farmers would salvage the bad nuts by feeding them to pigs or chickens, and some people would even eat the rotten nuts. Thanks to what they’ve learned in recent years, the villagers now bury the spoiled peanuts.

Aspergillus survives on organic matter in the soil, within easy reach of peanut pods, for example. Antonio Medina showed us how he dried his peanut pods off the ground, as soon as they are harvested, to stop the mold contaminating them. This keeps the nuts as clean and dry as possible.

Like most fungi, Aspergillus needs water to thrive. Don Antonio shows us how the farmers pick through the whole pile of harvested peanuts, after drying, when the pods are cleaner and the bad ones are easier to spot. The farmers go through the harvest one pod at a time, discarding all of the spoiled or discolored pods. It takes time, but it is a technique that smallholders can use to produce a high-quality product, based on thoughtfulness and hard work.

Agronomist Edwin Mariscal is trying a simple solar dryer with many of the farmers he works with. Mr. Mariscal introduces us to Santiago Gutiérrez, who has built one of the dryers: a wooden frame raised off the ground and covered with a sheet of tough, sun-resistant plastic. Mr. Mariscal has been working with similar dryers in the field, with farmers for years. The dryers started as a metal version for drying peaches, but experience showed that the dryers worked just as well if they were made from wooden poles cut on the farm.

Don Santiago, and his wife Emiliana, explain that the dryer works beautifully. Peanuts dry even in the rain. The family can also put maize and chilli into the structure, to dry those foods free of aflatoxin.

You can keep deadly aflatoxins out of food by following a few simple principles, including harvesting on time (not too late, or the Aspergillus has more time to get into the pods). Keep the produce off the ground. Dry it out of the rain and remove the moldy pieces. Store produce in a cool, dry place, off the floor.

Ackowledgement 

Thanks to Fundación Valles for information for this article, and for supporting our filming in the field. The video production was funded by the McKnight Foundation.

To watch the video

Watch and download the farmer training video: Managing aflatoxins in groundnuts during drying and storage

Sign up for the D-group at Access Agriculture to get an alert whenever new videos are posted on www.accessagriculture.org.

EVITAR UN ASESINO SILENCIOSO

Por Jeff Bentley, 12 de febrero del 2017

Las micotoxinas son venenos producidos por mohos de hongos comunes. Los ejemplos más conocidos son aflatoxinas, producidas por Aspergillus, que son de interés actual porque contaminan muchas clases de alimentos almacenados, incluso manís (cacahuates), yuca, maíz y chile (ají). Las aflatoxinas afectan la salud de la gente y de los animales y son  cancerígenos poderosos si se consume lo suficiente. Como muchos venenos exitosos, las aflatoxinas son invisibles y sin sabor, entonces son difíciles de manejar.

maize, chilli and groundnut in solarLa otra semana, estuve en Chuquisaca, Bolivia, con Paul y Marcella de Agro-Insight, haciendo un video para agricultores sobre cómo manejar mohos y reducir la contaminación de los alimentos. Felizmente, parte de la solución es el uso de tecnología apropiada.

El primer paso es reconocer a los mohos. Parecen un polvo verdusco oscuro, que crece entre la piel roja del maní y la capa blanca de la cáscara. La agricultora Dora Campos explica que antes, la gente de su comunidad, Achiras, no daba importancia a los mohos, diciendo simplemente que  las vainas estaban podridas. Los agricultores rescataban los manís malos, dándoles de comer a sus chanchos o gallinas, y algunas personas hasta comían los granos podridos. Gracias a lo que han aprendido en los últimos años, ahora los comuneros saben enterrar los granos podridos.

Aspergillus sobrevive en la materia orgánica del suelo, al alcance de las vainas de maní, por ejemplo. Antonio Medina nos mostró cómo él secaba sus vainas en un toldo al cosecharlas, para evitar que el moho las contamine. Eso ayuda a mantener a los manís limpios y secos. Como la mayoría de los hongos, el Aspergillus necesita agua para vivir.

Don Antonio nos muestra cómo los agricultores escogen todos los manís cosechados, después de secarlos, cuando las vainas son más limpias y es más fácil ver las malas. Los agricultores revisan toda su cosecha, una vaina a la vez, descartando las vainas malas o descoloridas. Toma tiempo, pero es una técnica que los campesinos pueden usar para producir un producto de alta calidad, trabajando en forma consciente.

El Ing. Edwin Mariscal está probando un simple secador solar con varias familias. El Ing. Mariscal nos presenta a Santiago Gutiérrez, que ha construido uno de los secadores: una tarima de palos como una mesa, cubierto de una hoja de plástico fuerte y resistente al sol. El Ing. Mariscal ha trabajado con secadores parecidos en el campo, con agricultores, durante varios años. Los secadores empezaron como una versión metálica para secar duraznos, pero la experiencia mostró que los secadores funcionaban igual si se hacían de palos cortados en la zona.

Don Santiago, y su esposa Emiliana, explican que el secador funciona bien bonito. Los manís secan hasta en la lluvia. La familia también lo usa para secar maíz y ají, para evitar aflatoxina en ellos.

Se puede mantener los alimentos libres de las aflatoxinas letales siguiendo unos principios sencillos, como cosechar a tiempo (no muy tarde, o el Aspergillus tendrá más tiempo para entrar a las vainas). No secar el producto en el suelo. Evitar que entre la lluvia al producto y saque las piezas podridas. Almacene en un lugar seco y fresco, no en el piso.

Agradecimiento

La Fundación Valles nos proporcionó información para este artículo, y apoyó nuestra filmación en el campo. Este video ha sido financiado por Programa Colaborativo de Investigación de Cultivos (CCRP) de la McKnight Foundation.

Para ver la video

El manejo de aflatoxinas en maní durante el secado  y en el almacenamiento

Puede inscribirse para el D-group en Access Agriculture para recibir una alerta cuando este video se suba al www.accessagriculture.org.

 

Share on FacebookTweet about this on Twitter

Puppy love February 5th, 2017 by

In the The Field Guide to Fields, Bill Laws colourfully depicts how fencing is a global and age-old practice. Fences mark field boundaries and they stop farm animals from straying.  Fences make it easier to look after animals but enclosed areas can make them more vulnerable to wily predators. During our recent trip in Bolivia we learned how farmers have come up with a clever way to protect their sheep from foxes.

puppy love 1After an amazing drive along winding mountainous roads of Chuquisaca, crossing a narrow improvised bridge just about the width of the car, and wading through riverbeds, we arrive at the farmhouse of doña Basilia Camargo early in the morning. Her husband is about to leave to mend some fences around their fields further up in the mountains. Doña Basilia and her husband keep their 15 sheep near the house in a corral fenced with brushwood and barbed wire.

puppy love 2I ask about the miniature house that has been built into the corral. The little mud house has a slanted roof to let the rainwater glide off, a small window and a door leading to the coral. It looks like a house for chickens, or a toy made by the children, but doña Basilia explains that it has a more serious purpose. She is raising a dog to protect the sheep from foxes.

Doña Basilia gets into the corral, and shows us an even smaller shelter in one of the corners. She calls it a “nest,” and she wriggles her hand through the small opening and brings out a little puppy that is only two weeks old, barely big enough to stand on its own legs. Most people only bring home puppies that have been weaned, but this puppy has a ewe as a substitute mother.

puppy love 3“I make the ewe lie down and then let the puppy suckle”, she explains. The dog will continue to suckle as it grows older, and will bond with the flock, following them to pasture and back to the corral.

It all has been properly planned. The small mud house that we saw along the fence is to become the house for the dog, once it has become bigger. When the puppy is old enough to follow the sheep, doña Basilia will take him with her, and spend two weeks herding the sheep. That should be enough for the dog to learn to tend the flock on his own.

Doña Basilia used to have a sheep dog but it died three years ago, and she has been trying since then to raise another one. Some dogs have died and others refuse to be trained.

She points to three dogs napping in the sun. “I tried training that dog there, but he is lazy and doesn’t like to walk. He goes out with the sheep, but comes back and just lies down near the house. I hope I will have better luck with this one,” she confides in us smilingly.

So while brushwood and barbed wire fences may be enough to keep the sheep in, a specially trained dog could defend them from foxes, both in the field and in the corral, where the dog will be sheltered from the cold in his own little house. Once more we were reminded of the marvelous ingenuity of local farmers to use their available resources to protect their valuable flock.

Further reading

Bill Laws, 2010. The Field Guide to Fields. Hidden Treasures of Meadows, Prairies and Pastures. Washington: National Geographic.

Share on FacebookTweet about this on Twitter

Crop with an attitude January 29th, 2017 by

A plant has a personality and, like people and countries, some have stronger characters than others. Take the lupin bean (Lupinus mutabilis), for example. It is an oddly erect legume that forms a sort of cone shape, and its glorious flowers make the plant wildly popular with gardeners in many countries. In Bolivia it is called “tarwi”, from Quechua, the language of the Incas.

tarwi in bloomWhile making a video in Bolivia, my colleagues and I asked doña Eleuteria in the village of Phinkina to tell us what she planted after harvesting tarwi. She surprised me by saying that sometimes she followed tarwi with potatoes. That’s astounding, because potatoes are such a demanding crop that Andean farmers often rest the soil for years before planting a field to potatoes. Otherwise the soil may be improved by adding tons of chicken manure. Bolivian farmers in the Andes don’t buy manure for other crops, just the fussy and valuable potato.

I followed up by asking Reynaldo Herbas, from the village of Tijraska, if he had ever planted potatoes right after tarwi. “Yes, and it does very well. Planting tarwi is like fallowing your soil, or like using chicken manure,” he explained.

Tarwi seeds are also rich in oils and proteins and doña Eleuteria regularly feeds lupin beans to her children. Like some other Bolivians doña Eleuteria make a nutritious snack by boiling the seeds, but it’s a lot of work. The grains need to be soaked in water for three days before boiling, then left in the running water of the river for several days to wash out the bitter alkaloids.

Agronomist Juan Vallejos from Proinpa (a research institute) confirmed that tarwi takes a lot of water to process. This is ironic, because tarwi is recommended for dry areas with impoverished soils. Sweet varieties without the bitter alkaloids do exist, but in Bolivia the search for these sweet lupins is only just starting.

sorting tarwi or lupine seedWhile visiting doña Eleuteria to learn about processing seed, she showed us how to pick out the bad grains of tarwi, to ensure that the crop planted from them would be healthy. (The main disease is anthracnose, caused by the fungus Colletotrichum gloeosporioides). We asked doña Eleuteria what she did with the diseased grains. We thought that she might say that she buried them to keep the disease from spreading. But no, she buries the discarded grains because raw lupin beans are toxic, whether they are healthy or diseased.

“I do bury them,” she explained, “because they are so bitter that if the chickens eat them they will die.”

Agronomist Vallejos explained that tarwi plants are so packed with alkaloids that sheep and cattle will not touch a crop growing in the field. However, the lupin plant is drought resistant and even withstands hail, which often mows down other food crops in the Andes. Local governments in Bolivia are starting to promote tarwi as a way of adapting to climate change.

A plant may have a complex personality, with sterling qualities as well as some tragic defects. Tarwi or lupin is in many ways a perfect crop: well-suited to the punishing climate of the High Andes while nutritious for people and good for the soil. The downside is that you need lots of water to process the beans and to leach out the poisons that can kill your unsuspecting chickens.

Acknowledgements

For this story in Cochabamba, Bolivia, I was fortunate enough to be accompanied by Paul Van Mele and Marcella Vrolijks of Agro-Insight and Juan Vallejos and Maura Lazarte and others from Proinpa. The visit was funded by the McKnight Foundation.

Further reading

Calisaya, J.J.,  M. Lazarte, R. Oros, P. Mamani 2016 “Desarrollo Participativo de Innovaciones Tecnológicas para Incrementar la Productividad de los Suelos Agrícolas en Regiones Andinas Deprimidas de Bolivia.” Read at the Community of Practice meeting, McKnight Foundation, Ibarra, Ecuador 11-16 July. See the paper here.

Further viewing

The farmer training video “Growing a good lupine crop” will be hosted on the Access Agriculture website shortly in English, Spanish, Quechua and Aymara.

CULTIVO CON CARÁCTER FUERTE

Por Jeff Bentley

29 de enero del 2017

Una planta tiene una personalidad, y como la gente y los países, algunos tienen más carácter que otros. Considere el lupino (Lupinus mutabilis), por ejemplo. Es una leguminosa que crece casi en forma de cono, y gracias a sus flores gloriosas la planta es querida por jardineros en muchos países. En Bolivia se llama “tarwi”, del quechua, el idioma de los Incas.

Mientas mis colegas y yo filmábamos un video en Bolivia, pedimos que doña Eleuteria en la comunidad de Phinquina nos contara qué sembraba después de cosechar el tarwi. Ella nos sorprendió cuando dijo que a veces sembraba papa después del tarwi. Es increíble, porque las papas son tan exigentes que muchos agricultores andinos descansan el suelo durante años antes de sembrar papas. Si no, el suelo tendrá que mejorarse agregando toneladas de gallinaza. Los agricultores en los Andes bolivianos no compran gallinaza para otros cultivos, solo la mimada y valiosa papa.

Luego le pregunté a Reynaldo Herbas de la comunidad de Tijraska, si él jamás había sembrado papas después del tarwi. “Sí, y produce muy bien. El sembrar tarwi es como descansar sus suelo, o como usar gallinaza,” explicó.

Marcella films Eleuteria soaking tarwiLos granos de tarwi son ricos en aceites y proteínas y doña Eleuteria a menudo los da de comer a sus hijos. Igual que algunas otras bolivianas, doña Eleuteria hace una merienda nutritiva con los granos cocidos, pero cuesta mucho trabajo. Los granos tienen que remojarse en agua durante tres días antes de cocerse, para después dejarlos en el chorro del río durante varios días más para expulsar los amargos alcaloides.

El Ing. Agrónomo Juan Vallejos de Proinpa (un instituto de investigación) confirmó que el tarwi toma mucha agua para procesarse. Es irónico, porque el tarwi se recomienda para zonas secas con suelos empobrecidos. Existen variedades dulces, sin los alcaloides amargos, pero en Bolivia recién empieza la búsqueda por esos lupinos dulces.

Cuando visitamos a doña Eleuteria para aprender cómo ella procesa la semilla, nos mostró cómo quitar los granos malos de tarwi, para asegurarse que el cultivo que siembra será sano. (La enfermedad principal es la antracnosis, causada por el hongo Colletotrichum gloeosporioides). Preguntamos a doña Eleuteria qué hacía con los granos enfermos. Pensábamos que diría que los enterraba para que las enfermedades no se diseminaran. Pero no, ella entierra a los granos descartados porque los granos crudos de tarwi son tóxicos, bien sea sanos o enfermos.

Eleuteria Sanchez burries bad lupine seed as chicken will die if they eat it“Los entierro,” explicó, “porque son tan amargos que si las gallinas se los comen podrían morirse.”

El Ing. Vallejos explicó que las plantas de tarwi están tan cargadas de alcaloides que las ovejas y vacas no tocan al cultivo en la parcela. Sin embargo, la planta de tarwi es resistente a la sequía y hasta aguanta a la granizada, que a menudo arrasa con otros cultivos en los Andes. Los gobiernos locales en Bolivia empiezan a promover el tarwi como una adaptación al cambio climático.

Una planta puede tener una personalidad compleja, con cualidades de oro igual que algunos defectos trágicos. El tarwi o lupino en muchas maneras en el cultivo perfecto: bien adaptado a los desafíos del clima altoandino, mientras es nutritivo para la gente y bueno para el suelo. Su lado oscuro es que requiere de mucha agua para lavar los venenos que pueden matar a tus gallinas inocentes.

Agradecimientos

Para escribir este cuento en Cochabamba, Bolivia, tuve la buena suerte de estar acompañado de Paul Van Mele y Marcella Vrolijks de Agro-Insight y Juan Vallejos y Maura Lazarte y otros de Proinpa. La visita se financió por la McKnight Foundation.

Para leer más

Calisaya, J.J.,  M. Lazarte, R. Oros, P. Mamani 2016 “Desarrollo Participativo de Innovaciones Tecnológicas para Incrementar la Productividad de los Suelos Agrícolas en Regiones Andinas Deprimidas de Bolivia.” Trabajo presentado en la reunión de la Comunidad de Práctica, McKnight Foundation, Ibarra, Ecuador 11-16 de julio. Ver la presentación aquí.

Para ver más

El video educativo para agricultores “Producir tarwi sin enfermedad” se colocará pronto en el sitio web de Agriculture en inglés, español, quechua y aymara.

Share on FacebookTweet about this on Twitter

Design by Olean webdesign