WHO WE ARE SERVICES RESOURCES




Most recent stories ›
AgroInsight RSS feed
Blog

Dung talk August 1st, 2021 by

Nowhere in the world do take people dung more seriously than in South Asia. For ages cow dung has been a valuable resource. In the countryside people collect fresh dung by hand, shape it into small balls and press it against the walls of houses to allow it to dry. Sometimes the dung balls are skewered onto one-meter long sticks. The dried dung is used as fuel to cook meals. In dryland areas where fuelwood is scarce, these dung sticks are especially important.

Dung is also used as fertilizer, and in India people prepare it in various ways. Sometimes they mix the dung with cow urine, chickpea flour, molasses and water and let it ferment for about a week to allow the microorganisms to multiply. Farmers use the solid or liquid preparations as a seed coating, to keep pests away and to help the seed to grow. Applied to crops as a fertilizer, the dung preparations also help to revive the soil. These and other traditional practices add organic matter to the soil while supporting a cover of vegetation year-round. This is increasingly seen as a way to achieve food security and cool our planet. The Community-Based Natural Farming Programme in Andhra Pradesh, India, has embraced these technologies and is promoting them to millions of smallholder farmers, setting an example to the world.

However, when sharing ideas between countries, sometimes deeply held practices need to be re-examined. As I mentioned in my previous blog it is important to understand the scientific principles underpinning technologies, so that farmers can then adapt these to their own context.

For example, a few years ago one of our Indian partners was developing a video on good microbes, and I insisted that he asked local experts if other dung could be used, not just from cows. A few weeks later he reported back that everyone had agreed, only cow dung should be used. Sheep or goat dung would be no good.

This set me thinking a lot. While we were still making that video, I was able to fix a meeting with Camilla Toulmin, former Director of the International Institute for Environment and Development. While her focus had been on policy research about agriculture, land, climate and livelihoods in dryland regions of Africa, I knew that her PhD research on natural resource management in Mali had touched on the use of manure. After an hour on skype, we had shared a lot of information, but were still unsure if sheep dung was as good a source of beneficial microbes as cow dung.

As I mulled over my conversation with Camilla, I kept thinking back to one time in a village in northern Ghana when we had screened a video about using animal manure in farming. A woman in the audience had asked, “Why do you only show cow manure? Cows belong to men! As we women, do not have cows, but only sheep and goats, can we not do anything with this dung to fertilize our land?”

That was a few years ago. Now that I have a few sheep of my own, and can try out things myself, I have some new insights. Microbes need food and water to grow. In dryland areas, or when animals graze on dry pasture, their droppings dry out pretty fast. The good micro-organisms in the dung may start to die. On lush vegetation, the droppings of my sheep are much larger than the typical small balls one imagines when thinking of sheep droppings. When I prepare my solution of good microbes I collect the dung when it is still fresh.

Indian farmers and experts may be right about cow dung being the most suitable resource in the drylands. Sheep droppings may just dry out too fast to keep the good microbes alive. But in the rainy season or in more humid countries, sheep dung may have lots of beneficial micro-organisms. And for women in northern Ghana, who don’t have cow dung, sheep and goat droppings may still add much needed nutrients to their soil. As soil microbiologist Walter Jehne said: “We should promote the principles and not be dogmatic about it. If you only have reindeer, you may as well make organic manure from their dung, and do not need cow dung.”

Communicating technologies to farmers cross-culturally requires that we move beyond time-honoured recipes. We need to understand the underlying principles and explain them as well as we can. There is gold in more than one type of dung.

Related blogs

Principles matter

Trying it yourself

Reviving soils

Effective micro-organisms

Friendly germs

Earthworms from India to Bolivia

A revolution for our soil

Related videos

Good microbes for plants and soil

Organic biofertilizer in liquid and solid form

Coir pith

Mulch for a better soil and crop

Vermiwash: an organic tonic for crops

Making a vermicompost bed

Inspiring platforms

Access Agriculture: hosts over 220 training videos in over 90 languages on a diversity of crops and livestock, sustainable soil and water management, basic food processing, etc. Each video describes underlying principles, as such encouraging people to experiment with new ideas.

EcoAgtube: a social media video platform where anyone from across the globe can upload their own videos related to natural farming and circular economy.

Eating the experiment July 25th, 2021 by

Vea la versión en español a continuación

Even though farmers and agricultural scientists share the same field of study, they have completely different experimental styles.

This past year in Ecuador, Ph.D. candidate Israel Navarrete was encouraging farmers to experiment, and he was struck by how much time it took them just to pick a research question. While organizing three small groups of farmers in the province of Cotopaxi, Israel found that the local people could take up to three meetings just to pick a topic. Some farmers felt that the other group members weren’t listening to them. (Hurt feelings are as normal in peasant communities as in university departments).

One of Israel’s small groups, made up entirely of women, was dedicated to growing potatoes and black maize. Like the farmers I wrote about recently from Lake Titicaca, the Ecuadorian women had problems with tuber moths destroying their seed potatoes. These farmers from Cotopaxi eventually decided to see if they could control the moths by treating their seed potatoes with garlic extract and with “cementina” (a local type of construction lime).

Israel encouraged them to do multiple replicates of the experiment. Replicates (simultaneous repetitions of the experiment) are a hallmark of the scientific method, and they are especially important in agriculture where each plot of earth, each batch of seed is slightly unique, like snowflakes. An idea has to be tried several times to see if the result is consistent, and is not just a chance occurrence.

But the farmers of Cotopaxi declined to use replicates, and simply tried the lime and garlic on one batch of seed. The solution seemed to work, so Israel encouraged the women to try it again, perhaps in different treatments (such as the lime alone, or the garlic alone, and both together). But the farmers refused. They were satisfied with the results.

As Israel explained this experience, he tried to hide his frustration that the farmers would not work on the experiment in more detail. He was philosophical about the results. He said, “The farmers take a complicated idea and test it in a simple way, while researchers take a simple idea, and test it in a complicated way.”

Much of the scientific method is designed to show universal truth. The experiment has to be replicable and described in numbers and published. After the data is collected, the experiment can be thrown away.

For the farmers, the experiment doesn’t have to be replicable. It only has to achieve results on their farm. It doesn’t need numbers because the farmers are looking for large qualitative differences. You either get rid of the tuber moths, or you don’t. And unlike the scientists, the farmers have to make a living from the actual experiment. In this case, the farmers planted the seed potatoes they had dusted with lime and garlic.

The scientists write up the experiment and publish. It is part of their job. The farmers learn from the experiment and then eat it. It is part of their life.

In spite of having remarkably different experimental styles, collaboration between smallholders and researchers is most valuable for the insights farmers have from years of making a living on the farm. A biologist may never have come up with the idea of fighting the tuber moth with lime and garlic.

People of different professions can have different goals and methods, even when they work on the same topic, which is all the more reason why they should share ideas with each other.

Related blog stories

Zoom to Titicaca

Acknowledgement

Israel Navarrete is an Ecuadorian expert on seed health, and a Ph.D. candidate at the University of Wageningen, in the Netherlands. His research is funded by the International Potato Center (CIP) and the McKnight Foundation’s Collaborative Crop Research Program (CCRP).

Further reading

Bentley, Jeffery W. 1994 “Facts, Fantasies and Failures of Farmer Participatory Research.” Agriculture and Human Values 11(2&3):140-150.

Photo

Photo by Veronika Vogel, courtesy of Israel Navarrete

 

EXPERIMENTOS QUE SE COMEN

Jeff Bentley 25 de julio del 2021

Aunque los agricultores y los cientĂ­ficos agrĂ­colas comparten el mismo campo de estudio, tienen estilos experimentales completamente diferentes.

El año pasado, en Ecuador, el estudiante de doctorado Israel Navarrete animó a los agricultores a experimentar, y le llamó la atención el tiempo que les llevaba sólo elegir una pregunta de investigación. Mientras organizaba tres pequeños grupos de agricultores en la provincia de Cotopaxi, Israel descubrió que los lugareños podían tardar hasta tres reuniones sólo para elegir un tema. Algunos agricultores sentían que los otros miembros del grupo no les escuchaban. (Las roces y resentimientos son tan comunes en las comunidades campesinas como en los departamentos universitarios).

Uno de los pequeños grupos de Israel, formado exclusivamente por mujeres, se dedicaba a cultivar papas y maĂ­z negro. Al igual que los agricultores y agricultoras del Lago Titicaca sobre las que escribĂ­ hace poco, las ecuatorianas tenĂ­an problemas con las polillas de la papa que destruĂ­an su semilla de papa. Estas agricultoras de Cotopaxi decidieron finalmente ver si podĂ­an controlar las polillas tratando su semilla con extracto de ajo y con “cementina” (un tipo de cal para la construcciĂłn).

Israel les animó a hacer múltiples réplicas del experimento. Las réplicas (repeticiones simultáneas del experimento) son un fundamento del método científico, y son especialmente importantes en la agricultura, donde cada parcela de tierra, cada lote de semillas es algo único, como los copos de nieve. Hay que probar una idea varias veces para ver si el resultado es consistente y no es una mera casualidad.

Pero las agricultoras de Cotopaxi se negaron a usar réplicas y se limitaron a probar la cal y el ajo en un solo lote de semilla. La solución pareció funcionar, por lo que Israel animó a las mujeres a probarlo de nuevo, tal vez en diferentes tratamientos (como la cal sola, o el ajo solo, y ambos juntos). Pero las agricultoras se negaron. Estaban satisfechos con los resultados.

Al explicar esta experiencia, Israel tratĂł de ocultar su frustraciĂłn de que los agricultores no quisieran trabajar en el experimento con más detalle. Se mostrĂł filosĂłfico sobre los resultados. Dijo: “Los agricultores toman una idea complicada y la prueban de forma sencilla, mientras que los investigadores toman una idea sencilla y la prueban de forma complicada”.

Gran parte del método científico está diseñado para mostrar una verdad universal. El experimento tiene que ser replicable y estar descrito en números y publicado. Una vez recolectados los datos, el experimento puede desecharse.

Para los agricultores, el experimento no tiene que ser replicable. SĂłlo tiene que conseguir resultados en su finca. No necesita nĂşmeros porque los agricultores buscan grandes diferencias cualitativas. O se elimina la polilla de la papa, o no. Y a diferencia de los cientĂ­ficos, los agricultores tienen que vivir del experimento en sĂ­. En este caso, los agricultores sembraron la semilla de papa que habĂ­an rociado con cal y ajo.

Los cientĂ­ficos redactan el experimento y lo publican. Es parte de su trabajo. Los agricultores aprenden del experimento y se lo comen. Es parte de su vida.

A pesar de tener estilos experimentales bien diferentes, la colaboración entre los pequeños agricultores y los investigadores es valiosa por los conocimientos que tienen los agricultores tras años de ganarse la vida trabajando la tierra. Puede que a un biólogo no se le haya ocurrido nunca la idea de combatir la polilla del tubérculo con cal y ajo.

Personas de distintas profesiones pueden tener objetivos y métodos diferentes, incluso cuando trabajan en el mismo tema, y justo por eso vale la pena que compartan ideas entre sí.

Historias relacionadas en el blog de Agro-Insight

Zoom al Titicaca

Agradecimiento

Israel Navarrete es un experto ecuatoriano en la sanidad de las semillas, y candidato a PhD en la Universidad de Wageningen, en los Países Bajos. Su investigación está financiada por el Centro Internacional de la Papa (CIP) y el Programa Colaborativo de Investigación de Cultivos (CCRP) de la Fundación McKnight.

Lectura adicional

Bentley, Jeffery W. 1990 “La ParticipaciĂłn de los Agricultores en Hechos, FantasĂ­as y Fracasos: IntroducciĂłn a la Memoria del Simposio.” Ceiba 31(2):29-41.

Foto

Foto por Veronika Vogel, cortesĂ­a de Israel Navarrete

 

Principles matter July 18th, 2021 by

In this age of restricted travel, when webinars have taken the place of conferences, at first I missed face-to-face meetings a lot. But virtual events do allow one to get exposed to far more ideas than before. This is also the case when digital learning is introduced to farmers. Farmers are increasingly getting information online, like videos. But the videos have to be properly designed. Unlike following a cooking recipe on a Youtube video, in agriculture, recipes must be accompanied by basic principles, so that farmers can decide how to experiment with the new ideas.

I was reminded of this recently during a webinar on the Community-Based Natural Farming Programme in Andhra Pradesh, India. One of the speakers was Vijay Kumar, one of the driving forces behind the programme, which aims to scale up agroecology to millions of farmers in Andhra Pradesh. Vijay is a humble, highly-respected former civil servant. He is much in demand, so meeting him in person would be a challenge, but introduced by a mutual colleague, I was fortunate to have already met him several times on Zoom. Vijay appreciates that Access Agriculture stands for quality training videos that enable South-South learning. According to him, the collaboration with Access Agriculture offers opportunities to help scale community-based natural farming from India to Africa and beyond. It is fortunate to have strong allies who understand the challenges of scaling and that to be cost-effective, one cannot simply visit all the world’s farmers in person.

Still, many people think that farmers can only learn from fellow farmers who live nearby and speak the same language, and that training videos are only useful when they are made locally. The many experiences from local partners with Access Agriculture training videos show that farmers do learn from their peers across cultures, on different continents. Farmers are motivated when they see how fellow farmers in other parts of the world solve their own problems. Access Agriculture videos are effective across borders in part because they explain the scientific principles behind technologies, and not just show how to do things. Vijay is convinced that scientific knowledge and farmer knowledge need to go hand in hand to promote agroecology.

The second speaker at the natural farming conference was Walter Jehne, a renowned Australian soil microbiologist, who talked about the need to build up soil organic matter and micro-organisms as a way to revive soils and cool the planet. I was pleased that he also stressed the importance of principles. When one of the Indian participants asked Walter if he could provide the recipe, he smilingly and patiently explained: “We should focus on the underlying principles, as principles apply across the globe, irrespective of where you are. You need organic matter, you need to build up good soil micro-organisms and make use of natural growth promotors. If a recipe tells you to use cow dung, but you don’t have cows, what can you do? If for instance you have reindeer, their dung will work just as well. You don’t have to be dogmatic about it.”  In two of my earlier blogs (Trying it yourself and Reviving soils) I did exactly do that back home: use ingredients that were available to me: sheep dung, leaves of oak trees in the garden, wheat straw, and so on, but building on ideas from Indian farmers.

Farmers have creative minds and this creativity is fed by basic principles: while recipes surely help, a better understanding of underlying scientific principles are what matter most when it comes down to adaptation to local contexts. We, at Access Agriculture are thrilled to join Andhra Pradesh’s efforts to spread Community-Based Natural Farming across the globe.

Related webinars

365 Days Green Cover & Pre-Monsoon Dry Sowing (PMDS) – Walter Jehne – Streamed on 6th July 12:30 pm

Restoring the water cycles to cool the climate

Related blogs

Trying it yourself

Reviving soils

Effective micro-organisms

Friendly germs

Earthworms from India to Bolivia

A revolution for our soil

Damaging the soil and our health with chemical reductionism

Related videos

Good microbes for plants and soil

Organic biofertilizer in liquid and solid form

Coir pith

Mulch for a better soil and crop

Vermiwash: an organic tonic for crops

Making a vermicompost bed

Inspiring video platforms

Access Agriculture: hosts over 220 training videos in over 90 languages on a diversity of crops and livestock, sustainable soil and water management, basic food processing, etc. Each video describes underlying principles, as such encouraging people to experiment with new ideas.

EcoAgtube: a social media video platform where anyone from across the globe can upload their own videos related to natural farming and circular economy.

Black fire ants July 11th, 2021 by

The surest way to tell if you have black fire ants in your garden is to accidentally stand on or near their nest. The ants will crawl through your clothes first and then start stinging you all at once. You may have to go inside and take off your trousers to find all of the ants in your pants. A second diagnostic test of black fire ants is to plant a vegetable seedbed, and wait for it to come up, but it never does. The ants have eaten all your seeds.

These ants love seeds and they will dig up every one you plant in their foraging area.

You can try dousing their nest with boiling water, insecticide or gasoline (and then lighting it). I’m just kidding, but it may not even work; these ants are pretty tough. Or you can take Rachel Carson’s suggestion, and fight pests with biology, not chemistry.

Years ago, while working with my student Eloy González on his entomology thesis at El Zamorano, Honduras, by total serendipity we learned that fire ants can be perfectly controlled with raw grains of rice.

Here’s how it works. Plant your vegetable seedbed any way you like. Then sprinkle a handful of raw rice over the surface. The black fire ants are omnivorous, but they prefer dense food packages like seeds or other insects. The ants also know a bargain when they see one. The ants will haul off your rice grains and ignore your smaller, harder-to reach soil-covered vegetable seeds.

Once your vegetables come up, the black fire ants will lose interest in them. However, the ants will continue to patrol your vegetable patch, looking for insect pests to drag back to their nest, to eat.

If you don’t want to use rice, try bread crumbs, bits of stale tortillas or other food scraps.

In our garden, we have had no insect pests, except for the Mediterranean fruit flies. Our patchwork of many species of trees and vegetables confuses most insect pests. And because we have never applied insecticides, we have many beneficial insects that kill most of the herbivorous ones before they can become pests. We manage our black fire ants with the rice trick, and by not standing on their nests. They repay us by helping to keep our vegetables pest-free.

If you live outside of tropical Central or South America, you may never have to deal with black fire ants. But wherever you live, you can always look for ways to live with insects, with biology, not chemistry.

Further reading

Paul has his own story about Vietnamese farmers who educate weaver ants, to protect their orchards from insect pests.

Ants as friends.

Related Agro-Insight blog stories

Ants in the kitchen

Sugar sweet ants

The smell of ants

When ants and microbes join hands

Videos about insects that hunt and control insect pests, from Access Agriculture

The wasp that protects our crops

Promoting weaver ants in your orchard

Weaver ants against fruit flies

Scientific names

The black fire ant, also called the tropical fire ant, is Solenopsis genimata. The red fire ant, the so-called “imported” one is Solenopsis invicta. The red fire ant is native to Argentina, and slipped into the USA, possibly as a stowaway on a ship, after 1933. in Silent Spring, Rachel Carson tells the story of how the US Department of Agriculture lost its chemical war against the red fire ant. That red ant is still thriving in North America. Unlike the black fire ant, which builds discrete, ground-level nests, the red one builds, a tall, conspicuous entrance to its burrow.

Coconut coir dust July 4th, 2021 by

Many years ago, I wrote one of my first articles, on “Coconut Coir Dust Mulch in the Tropics” and published it in Humus News, a trilingual (Dutch, French, English) magazine from Comité Jean Pain, a Belgian non-profit association that has trained people from across the globe on compost making since 1978.

So recently, when one of our Indian video partners decided to make a training video on composting coir dust, I dug up my old article, and was pleasantly surprised to see that it still contained useful information.

Coconut coir dust or coir pith is the material that is left over after the fibres have been removed from the coconut husk. Coconut factories often have no idea what to do with this waste, so in many coastal areas in the humid tropics one can find heaps of this natural resource.

Whether economical or ecological motives are the driving force, in low external input agriculture systems in the tropics, farmers often use biowaste for soil conservation and sustainable land use.

While coir dust has negligible amounts of nitrogen, phosphorous, calcium and magnesium, making it a poor source of nutrients, it can store up to 8 times its dry weight in water. By applying a 15 cm thick layer of coir dust mulch around coconut seedlings in Sri Lanka, irrigation needs could be reduced by up to 55 %. In a pineapple coconut intercrop during the dry season, my coir paper reported that the top soil layer had a moisture content of 49 % under the mulch, compared to 10 % under a sandy ridge of the same height.

When coir dust mulch is applied to salt-sensitive plants care, has to be taken that the concentration of salt is not too high. The highest salt concentrations, though still low, are mainly observed in coir dust which is fresh and from coastal coconut trees. This salt concentration can be reduced by leaving the material in the rain, before applying the mulch in the field or nursery.

In a commercial tree nursery in Kenya, germination of cashew seeds is enhanced by applying a coir dust mulch. Besides, roots are not damaged after transplanting, thanks to the loose structure of the coir dust. Weeds in cashew plantations in India are suppressed by applying a layer of 7.5 cm of mulch in a 1.5 m radius around the trees. In Sri Lanka, this kind of mulch is mainly used in semi-perennial crops like pineapple and ginger. Coir dust mulch suppressed some of the world’s worst weeds, namely goatweed, purple nutsedge and the sensitive mimosa plant.

Besides suppressing weeds, coir dust mulch also helps to establish cover crops. Herbaceous legumes are often used as cover crop under coconut in Sri Lanka, but they are suppressed by weeds in dry weather. Applying coir dust tackles the weeds, but favors the leguminous cover crop during the dry season.

Coir dust consists mainly of lignin, a woody substance which is poorly biodegradable. About 90 % is organic matter and the C/N ratio is extremely high (> 130). The low pH of 4.5 – 5.5 offers an extra protection against biodegradation, as many micro-organisms do not survive once the pH drops below 4. Slow biodegradation of organic mulches has been recently more and more looked for, especially in the humid and sub-humid tropics, where fast mineralization of the organic matter and leaching of minterals are big problems. While coir dust can easily be applied as a mulch, the recently produced video suggests that it is better to compost the coir dust first when one wants to use it to improve the soil structure. The video shows how one can easily make one’s own organic decomposer that is rich in good microbes to break down the lignin.

Coir dust, being important to control weeds, improve soil physical conditions and increase water retention capacity, should be regarded as an important resource for soil conservation and sustainable land use in integrated cropping systems, and not as waste. The use of coir dust in the tropics, however, is not only hindered by a lack of knowledge, which the video aims to share, but is also seriously threatened as coir dust is increasingly exported to Europe where it is used as an horticulture substrate.

Further reading

Van Mele, P. 1997. Utilization of Coconut Coir Dust Mulch in the Tropics. Humus News, 13(1), p. 3-4.

Related blogs

Reviving soils

A revolution for our soil

Damaging the soil and our health with chemical reductionism

Related video

Coir pith – from waste to wealth

Inspiring platforms

Access Agriculture: hosts over 220 training videos in over 90 languages on a diversity of crops and livestock, sustainable soil and water management, basic food processing, etc. Each video describes underlying principles, as such encouraging people to experiment with new ideas.

EcoAgtube: a social media video platform where anyone from across the globe can upload their own videos related to natural farming and circular economy.

Design by Olean webdesign